
#5 - tracking precision and correlations

If your ever need to design, calibrate, or use data 
from a tracking system, you must read and  
understand the paper by Gluckstern: 

”Uncertainties in track momentum and direction, 
due to multiple scattering and measurement 
errors,”  R. L. Gluckstern, 

Nucl. Instr. Meth. 24 (1963) 381.

He starts from a simple parabolic track segment with 
transverse spatial measurements of the trajectory.  I have this 
article on paper in my office, but not here ….
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Least squares fit (to a straight line, x = mz + b):

N points on line; fit parameters are slope m and x-intercept b.

”chi-squared”, �
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The “best estimates” of m and b are at the minimum in �
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It is good to take out the factor of 2 so that the derivative is like

the argument to a Gaussian:
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These derivatives give:
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Looks like linear equations -
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The nice part is that the second derivatives give

the terms in the error matrix:
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So you have the complete error matrix for the fit.
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Gluckstern did the same thing except he used

(b+mz + cz2)
where his curvature term c was the inverse

radius of curvature c = 1/R ⇡ 1/p.

An important correlation results from his fit:

a fluctuation in the spatial measurement �x

leads to a negative correlation between the

momentum and the azimuthal angle of a track:
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In this fit, ��x leads to +�p and ���.



Back to tracking: 

it is useful to express the momentum uncertainty in terms of the 
curvature, k, defined as the inverse radius of curvature, k=1/R. 

The uncertainty in the curvature has two terms:  one from the sagitta  
uncertainty and the other from the multiple scattering uncertainty.
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The full multiple scattering sagitta uncertainty is

�kMS = 0.0157GeV/c
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Overall momentum uncertainty (MS and sagitta independent):
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This can be seen as:

�
p

p2 = [detector construction]� [material budget]/p

As a track points more in the “forward” direction in a solenoidal magnetic field, 
                    θ ~ 0,  
two things happen: 

i) the full radial track length is not reached as the particle enters the end cap, and 
ii) the Lorentz bending force is less as v x B goes to zero.   

Both effects can be represented and scaled as:

�p/p2 ! 1/ sin5/2 ✓



You can see tracking resolution in ATLAS and CMS data:

�p/p2 ⇡ 3⇥ 10�4 (GeV/c)�1

�p/p2 ⇡ 1⇥ 10�4 (GeV/c)�1



Vertex chamber for impact parameter measurement:  e.g., D0



Impact parameter measurement:  pure geometry, but not simple
Leverage:
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The third contribution is from the lateral displacement of the track
due to multiple scattering, yrms = r · ✓rms/

p
3, which scales like 1/p

and comes from all the layers of the vertex chamber. Summing these
in quadrature leads to a term like
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However, there are correlations between these terms [see PDG, Sec.27.3].
Simulation. The overall impact parameter resolution is
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Therefore, a better impact parameter resolution is achieved by 

i) small r1  (get close to the beam) 
ii) small l/X0   (low material budget) 

Higher momentum always helps.

A goal for an e+e� collider is

�b ⇡ 5µm� 10µm/(p sin3/2 ✓)� 10µm/
p
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This can be achieved with (20µm)

2
pixels, providing the mass is low enough.
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We see that the momentum resolution goes like ~1/l2 .  If a track goes 
from the integration vertex, through the vertex chamber, and through  
the tracking chamber, its length is larger. 

However, this is nullified if there is a lot of multiple scattering  
between the vertex chamber and the main tracking chamber.

Summary of tracking:

• Inverse momentum, 1/p, is Gaussian, 
• Optimum momentum resolution has 1/4 of the measurements at either 

of a track segment, and 1/2 at the middle, 
• The momentum and azimuth angle are negatively correlated, 
• Helical tracks not perpendicular to the B-field, “dip” angle λ, 

• Modern methods for tracking, e.g., Kalman Filter, do not alter the 
results from Gluckstern, and 

• The impact parameter of tracks from a 2-body decay are 
approximately independent of the parent particle momentum. 

�ksagitta ! �ksagitta/ cos2 � and �kMS ! �kMS/ cos2 �
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